A new diabetes patient sub-classification: What’s next?

Emma Ahlqvist
Associate Professor
Lund University Diabetes Centre, Malmö, Sweden
Current diabetes classification

- **Type 1 diabetes** – autoimmune diabetes in the young (<35 years)
- **LADA** – latent autoimmune diabetes of the adult (>35 years)
- **Monogenic diabetes** – rare mutations (MODY, neonatal)
- **Secondary**
- **Type 2 diabetes** – everyone else
Is this not enough?

• Individuals with diabetes, especially type 2 diabetes, are very different
 – Risk of complications
 – Need for treatment
 – Response to diabetes medication

• Can we divide diabetes patients into smaller more homogeneous groups that are clinically useful for predicting progression and need for medication?
A new diabetes sub-classification

March 2018, Lancet Diabetes and Endocrinology

Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables

Summary
Background Diabetes is presently classified into two main forms, type 1 and type 2 diabetes, but type 2 diabetes in particular is highly heterogeneous. A refined classification could provide a powerful tool to individualise treatment regimens and identify individuals with increased risk of complications at diagnosis.

Diabetes is actually five separate diseases, research suggests

By James Gallagher
Health and science correspondent, BBC News 6 hours ago | Health

Scientists say diabetes is five separate diseases, and treatment could be tailored to each form.

Five categories for adult diabetes, not just type 1 and type 2, study shows

Published Online
March 5, 2018
http://dx.doi.org/10.1016/
Novel subtypes

• We can reproducibly divide patients into **five subgroups** with **different characteristics** and progression

![Diagram showing subgroups of diabetes]

- **Type 1 diabetes / LADA**
 - 6%
 - SAID = Severe Autoimmune Diabetes
 - GAD antibodies, low insulin secretion, poor metabolic control

- **Type 2 diabetes**
 - 18%
 - SIDD = Severe Insulin Deficient Diabetes
 - Low insulin secretion, poor metabolic control
 - 15%
 - SIRD = Severe Insulin Resistant Diabetes
 - Insulin resistance, obesity, late onset
 - 22%
 - MOD = Moderate Obesity-Related Diabetes
 - Obesity, early onset
 - 39%
 - MARD = Moderate Age-Related Diabetes
 - Late onset, good metabolic control

• This clustering approach has been **replicated in numerous cohorts**
SIDD - Severe insulin-deficient diabetes

- 17.5% of patients
- Low insulin secretion
- High HbA1c at diagnosis
- Relatively early onset (mean 57 years)
- Receive the most treatment but still the last to reach treatment goals
- Increased risk of retinopathy and neuropathy

![Graphs showing cumulative incidence of retinopathy and neuropathy over duration of diabetes]
SIRD - Severe insulin-resistant diabetes

- 15.3% of patients
- Very insulin resistant
- Obese (mean BMI 34)
- Late onset (mean 65 years)
- Low HbA1c
- Higher risk of kidney complications
- Higher prevalence of non-alcoholic fatty liver disease
What is next?
Are the subtypes different diseases?
When can they be implemented in the clinic?

- Clinical characterisation
- Replication in other ethnicities
- Genetics
- Epigenetics
- Response to medication
- Biomarkers
Replication in other ethnicities

• The same subtypes have been identified in cohorts from all over the world

• Most find the same five subtypes

• Some have identified additional subtypes e.g. in India

• Comparisons are complicated by use of slightly different methods and cluster variables
Genetic risk score (GRS) analysis

Mansour Aly et al, MedRxiv, 2020
GRS for insulin secretion and fasting insulin

- SIRD is associated with fasting insulin but not insulin secretion

Mansour Aly et al, MedRxiv, 2020
Genetic variants in the LRMDA gene increase the risk of developing MOD but not other subtypes.

<table>
<thead>
<tr>
<th>Subtype</th>
<th>ANDIS OR</th>
<th>ANDIS p</th>
<th>DIREVA OR</th>
<th>DIREVA p</th>
<th>META-ANALYSIS OR</th>
<th>META-ANALYSIS p</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAID</td>
<td>1.03</td>
<td>0.65</td>
<td>0.94</td>
<td>0.45</td>
<td>0.99</td>
<td>0.85</td>
</tr>
<tr>
<td>SIDD</td>
<td>1.08</td>
<td>0.18</td>
<td>1.10</td>
<td>0.95</td>
<td>1.05</td>
<td>0.28</td>
</tr>
<tr>
<td>SIRD</td>
<td>1.13</td>
<td>0.01</td>
<td>1.06</td>
<td>0.47</td>
<td>1.11</td>
<td>0.02</td>
</tr>
<tr>
<td>MOD</td>
<td>1.35</td>
<td>1.3x10^-9</td>
<td>1.14</td>
<td>0.04</td>
<td>1.27</td>
<td>4.3x10^-9</td>
</tr>
<tr>
<td>MARD</td>
<td>1.10</td>
<td>0.01</td>
<td>1.03</td>
<td>0.55</td>
<td>1.07</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Mansour Aly et al, MedRxiv, 2020
Response to treatment

- SIDD would likely benefit from early treatment with insulin or insulin secretagogues
- SIRD would likely benefit from insulin sensitizers
- Needs to be proven before clinical implementation
- **Randomized trial** – SIDD and SIRD ongoing in ANDIS
- **Analysis of existing trials** in collaboration with AstraZeneca and Sanofi
Information about subtype will soon be returned to the treating doctor for newly registered ANDIS participants.

Treatment cannot be recommended yet but SIDD and SIRD could benefit from screening for complications.
Conclusions

• Diabetes patients can be reproducibly subdivided into five subtypes

• The insulin deficient and insulin resistant subtypes have the highest risk of complications

• Better science today – better treatment in the near future!

• Learn more on the RHAPSODY outcomes webpages: https://imi-rhapsody.eu/outcomes/
This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 115881 (RHAPSODY). This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA.

This work is supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 16.0097-2. The opinions expressed and arguments employed herein do not necessarily reflect the official views of these funding bodies.

Thank you for your attention!

IMI-RHAPSODY.EU