The RHAPSODY project: Biomarkers in type 2 diabetes

Bernard Thorens
RHAPSODY academic coordinator
University of Lausanne, Switzerland
Development of type 2 diabetes: A stepwise process

Normal glycemic control → Prediabetes → Type 2 diabetes → Diabetes deterioration

- Prediabetes: Impaired Glucose tolerance / Impaired Fasting glycemia

Rate of glycemic deterioration in T2D patients from the GoDarts cohort (HbA1c/year)

Donelly LA, et al., Diabetologia, 2018
Development of type 2 diabetes: A stepwise process

Normal glycemic control ➔ Prediabetes ➔ Type 2 diabetes ➔ Diabetes deterioration

A

- Normal glycemic control: 93.6%
- Prediabetes: 5.2%
- Type 2 diabetes: 1.2%

- Impaired Glucose tolerance
- Impaired Fasting glycemia

F

- Cluster 1 (SAID): 19.8%
- Cluster 2 (SIDD): 14.0%
- Cluster 3 (SIRD): 10.6%
- Cluster 4 (MOD): 41.0%
- Cluster 5 (MARD): 14.7%

Ahlqvist E et al., The Lancet Diabetes Endocrinology, 2018
Identification of biomarkers

Normal GT → Pre-T2D → T2D → Glycemic deterioration

Specific Questions:

• Can we identify biomarkers that are prognostic of T2D susceptibility and T2D deterioration?

• Can such biomarkers predict dysfunctions in β-cells or in insulin target tissues?

• Can we identify the tissues and metabolic pathways controlling the production of these biomarkers?
Biomarkers

- Molecules that can be objectively measured and evaluated as an indicator of normal biological or pathogenic processes, as well as pharmacological response to a therapeutic intervention

http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm
Plasma Biomarkers

- Lipids
- Polar metabolites
- Proteins
- RNAs
Plasma Biomarkers

Requirements for biomarker discovery:

• Technological platforms for quantitative measurements of molecular species

• Patient cohorts with detailed phenotyping and biosamples (plasma)

• Preclinical models of prediabetes/diabetes

• Federated database for all data storage and analysis
RHAPSODY Plasma Biomarkers Strategy

Biomarkers for:
- Disease stratification
- Diagnosis
- Disease monitoring
- Innovative clinical trials

Legal & Economics
Cohorts
Insulin resistance biomarkers
Beta-cell biomarkers
Omics
Federated Database
Use of preclinical models to identify biomarkers of diabetes susceptibility and of β-cell dysfunction

- Use of preclinical models to identify candidate biomarkers for the progression to type 2 diabetes and validation in human cohorts

- Use of preclinical models to identify plasma biomarkers predictive of β-cell function and to identify the metabolic pathways involved in biomarker production
Use of preclinical models to identify biomarkers of diabetes susceptibility and of β-cell dysfunction

6 mouse strains

- C57Bl/6
- A/J
- Balb/c
- AKR
- 129S2
- DBA/2J

High Fat

Weight

Regular

2, 10, 30 and 90 days

Insulin secretion

Glucose Tolerance

Blood Glucose (mg/dL)

Time (hour)

Insulin Tolerance

Time after insulin addition (minutes)

Islet morphology

Lipidomics

RNA-Seq

Islets, liver, fat, muscle

10 September 2021
Integrative analysis of plasma lipidomics with mouse physiological traits

Lipid profiles across all conditions (6 strains, 4 time points, 2 diets)

- Correlation, hierarchical clustering
- Modules of lipids with similar profiles
- Correlation of module profiles with physiological traits
- Investigation of trait-associated lipid modules
Ceramides are correlated to glucose intolerance and insulin sensitivity in metabolically challenged mouse strains.
Analysis of ceramides in the plasma of individuals from the DESIR cohort

- Prospective cohort of > 5000 people followed for > 9 years
- **Summary of plasma analysis**

<table>
<thead>
<tr>
<th>Recruitment</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yr 0</td>
<td>Yr 3</td>
</tr>
<tr>
<td>Group 1: 82 ND</td>
<td>82 T2D</td>
</tr>
<tr>
<td>Group 2: 48 ND</td>
<td>48 ND</td>
</tr>
<tr>
<td>Group 3: 62 ND</td>
<td>61 ND</td>
</tr>
<tr>
<td>Control: 105 ND</td>
<td>102 ND</td>
</tr>
</tbody>
</table>
Dihydroceramides are enriched in the plasma of T2D patients up to 9 years before diagnostic

The DESIR cohort

Wigger L et al., Cell Reports, 2017
Use of preclinical models to identify biomarkers of diabetes susceptibility and of β-cell dysfunction

• Use of preclinical models to identify candidate biomarkers for the progression to type 2 diabetes and validation in human cohorts

• Use of preclinical models to identify plasma biomarkers predictive of β-cell function and to identify the metabolic pathways involved in biomarker production
A systems biology analysis of the crosstalk between liver and pancreatic β-cell function through plasma lipids

• Progressive loss of β-cell secretion capacity over time

• Questions:
 – Can we find plasma biomarkers predictive of β-cell function?
 – Can we identify the tissue and metabolic pathway that produce the biomarker?
 – Can we establish a link between a tissue metabolic pathway – plasma biomarkers – and β-cell function?
Search for plasma lipids as potential biomarkers: experimental design

- C57BL/6
- BALB/cJ
- DBA/2J

Days: 5, 13, 33

Basal glycemia, Basal insulinemia, OGTT, ITT

RNA-seq, Lipidomics

Regular, High Fat
Plasma Triglycerides (TAGs) correlate with β-cell insulin secretion genes and liver fatty acid degradation pathway

Fatty acid degradation (β-oxidation)

Glucose-stimulated insulin secretion (GSIS)
IN HUMANS: Same correlation between plasma TAGs and insulin secretion genes as in mice

- Islets from partially pancreatectomized patients
- Plasma lipids from the same patients

Wigger L. (...) Solimena, M., Nat. Metabolism, 2021

Identification of PITPNC1 as a novel regulator of insulin secretion
Conclusions

• The use of preclinical models allowed to identify plasma biomarkers for type 2 diabetes susceptibility

• Such biomarkers were found to be prognostic biomarkers also in humans

• These biomarkers could be demonstrated to correlate with the function of pancreatic β-cells

• Comparative analysis in mice and humans of the correlation between plasma TAGs and islet gene expression allowed to characterise a so far unknown regulator of insulin secretion
RHAPSODY biomarker identification in humans
(See presentation by R. Slieker)

- Biomarker discovery was assayed for:
 - Proteomics
 - Lipids
 - Polar metabolites

- **Phase 1: Discovery** of biomarkers of T2D progression using samples from the three RHAPSODY discovery cohorts (NT = 9900)

- **Phase 2: Replication** of biomarkers of T2D progression (NT= 4000)

- **Phase 3: Establishment of a biomarker shortlist**
Biomarker shortlist includes the same lipids identified in preclinical models

Lipidomics:

- TAG class (namely 50.1.0, 46.1.0, 46.2.0, 48.1.0, 51.1.0, 48.2.0, 48.3.0 and 49.1.0)

- Sphingomyelin (SM 42.2.2)
Next steps

Evaluate the utility of the biomarkers in a **prospective clinical trial** to assess their utility for:

- **Stratification of diabetic patients** - to more precisely identify high-risk subjects at baseline more likely to respond to a specific intervention

- **Monitoring of diabetes progression** - to improve understanding of the course of the disease, or specific symptoms of the disease
Thank you for your attention!

This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 115881 (RHAPSODY). This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA.

This work is supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 16.0097-2. The opinions expressed and arguments employed herein do not necessarily reflect the official views of these funding bodies.

IMERHAPSODY.EU