Our publications
1.
Sequential in vivo labeling of insulin secretory granule pools in <i>INS</i> - <i>SNAP</i> transgenic pigs.
Proceedings of the National Academy of Sciences 118, e2107665118 (2021). doi: 10.1073/pnas.2107665118
2.
Distinct Molecular Signatures of Clinical Clusters in People with Type 2 Diabetes: an IMIRHAPSODY Study.
Diabetes db201281 (2021). doi: 10.2337/db20-1281
3.
Mechanisms of Weight Loss After Obesity Surgery.
Endocrine Reviews bnab022 (2021). doi: 10.1210/endrev/bnab022
4.
Paired box 6 programs essential exocytotic genes in the regulation of glucose-stimulated insulin secretion and glucose homeostasis.
Science Translational Medicine 13, eabb1038 (2021). doi: 10.1126/scitranslmed.abb1038
5.
Replication and cross-validation of type 2 diabetes subtypes based on clinical variables: an IMI-RHAPSODY study.
Diabetologia (2021). doi: 10.1007/s00125-021-05490-8
6.
Novel biomarkers for glycaemic deterioration in type 2 diabetes: an IMI RHAPSODY study.
(Endocrinology (including Diabetes Mellitus and Metabolic Disease), 2021). http://medrxiv.org/lookup/doi/10.1101/2021.04.22.21255625.
7.
Pathological β-Cell Endoplasmic Reticulum Stress in Type 2 Diabetes: Current Evidence.
Frontiers in Endocrinology 12, 650158 (2021). doi: 10.3389/fendo.2021.650158
8.
Consequences for Pancreatic β-Cell Identity and Function of Unregulated Transcript Processing.
Frontiers in Endocrinology 12, 625235 (2021). doi: 10.3389/fendo.2021.625235
9.
Long Non-Coding RNAs as Key Modulators of Pancreatic β-Cell Mass and Function.
Frontiers in Endocrinology 11, 610213 (2021). doi: 10.3389/fendo.2020.610213
10.
3D FIB-SEM reconstruction of microtubule–organelle interaction in whole primary mouse β cells.
Journal of Cell Biology 220, e202010039 (2021). doi: 10.1083/jcb.202010039
11.
Adipocyte-specific deletion of Tcf7l2 induces dysregulated lipid metabolism and impairs glucose tolerance in mice.
Diabetologia 64, 129–141 (2021). doi: 10.1007/s00125-020-05292-4
12.
Intravital imaging of islet Ca2+ dynamics reveals enhanced β cell connectivity after bariatric surgery in mice.
Nature Communications 12, 5165 (2021). doi: 10.1038/s41467-021-25423-8
13.
Chromatin 3D interaction analysis of the STARD10 locus unveils FCHSD2 as a regulator of insulin secretion.
Cell Reports 34, 108703 (2021). doi: 10.1016/j.celrep.2021.108703
14.
Estimating risk factor progression equations for the UKPDS Outcomes Model 2 (UKPDS 90).
Diabetic Medicine 38, (2021). doi: 10.1111/dme.14656
15.
Prediction of mortality and major cardiovascular complications in type 2 diabetes: External validation of UK Prospective Diabetes Study outcomes model version 2 in two European observational cohorts.
Diabetes, Obesity and Metabolism 23, 1084–1091 (2021). doi: https://doi.org/10.1111/dom.14311
16.
Plasma triacylglycerols are biomarkers of ß-cell function in mice and humans.
Molecular Metabolism 101355 (2021). doi: 10.1016/j.molmet.2021.101355
17.
Détection cérébrale du glucose et homéostasie du glucose.
Médecine des Maladies Métaboliques 15, 518–525 (2021). doi: 10.1016/j.mmm.2021.05.004
18.
Multi-omics profiling of living human pancreatic islet donors reveals heterogeneous beta cell trajectories towards type 2 diabetes.
Nature Metabolism 3, 1017–1031 (2021). doi: 10.1038/s42255-021-00420-9
19.
Glucose treatment of human pancreatic β-cells enhances translation of mRNAs involved in energetics and insulin secretion.
Journal of Biological Chemistry 297, 100839 (2021). doi: 10.1016/j.jbc.2021.100839
20.
Integration of single-cell datasets reveals novel transcriptomic signatures of β-cells in human type 2 diabetes.
NAR genomics and bioinformatics 2, lqaa097 (2020). doi: 10.1093/nargab/lqaa097
21.
dsSwissKnife: An R package for federated data analysis.
bioRxiv 2020.11.17.386813 (2020). doi: 10.1101/2020.11.17.386813
22.
Pancreatic Steatosis Associates With Impaired Insulin Secretion in Genetically Predisposed Individuals.
The Journal of Clinical Endocrinology & Metabolism 105, dgaa435 (2020). doi: 10.1210/clinem/dgaa435
23.
Functional Genomics in Pancreatic β Cells: Recent Advances in Gene Deletion and Genome Editing Technologies for Diabetes Research.
Frontiers in Endocrinology 11, 576–632 (2020). doi: 10.3389/fendo.2020.576632
24.
Covid-19 and Diabetes: A Complex Bidirectional Relationship.
Frontiers in Endocrinology 11, 582936 (2020). doi: 10.3389/fendo.2020.582936
25.
Transcription factors that shape the mammalian pancreas.
Diabetologia 63, 1974–1980 (2020). doi: 10.1007/s00125-020-05161-0
26.
Benchmarking the Cost-Effectiveness of Interventions Delaying Diabetes: A Simulation Study Based on NAVIGATOR Data.
Diabetes Care 43, 2485–2492 (2020). doi: 10.2337/dc20-0717
27.
The making of insulin in health and disease.
Diabetologia 63, 1981–1989 (2020). doi: 10.1007/s00125-020-05192-7
28.
An investigation of causal relationships between prediabetes and vascular complications.
Nature Communications 11, 4592 (2020). doi: 10.1038/s41467-020-18386-9
29.
Evaluating the Ability of Economic Models of Diabetes to Simulate New Cardiovascular Outcomes Trials: A Report on the Ninth Mount Hood Diabetes Challenge.
Value in Health 23, 1163–1170 (2020). doi: 10.1016/j.jval.2020.04.1832
30.
A surrogate of Roux-en-Y gastric bypass (the enterogastro anastomosis surgery) regulates multiple beta-cell pathways during resolution of diabetes in ob/ob mice.
EBioMedicine 58, 102895 (2020). doi: 10.1016/j.ebiom.2020.102895
31.
The Constitutive Lack of α7 Nicotinic Receptor Leads to Metabolic Disorders in Mouse.
Biomolecules 10, 1057 (2020). doi: 10.3390/biom10071057
32.
Disconnect between signalling potency and in vivo efficacy of pharmacokinetically optimised biased glucagon-like peptide-1 receptor agonists.
Molecular Metabolism 37, 100991 (2020). doi: 10.1016/j.molmet.2020.100991
33.
Sexually dimorphic roles for the type 2 diabetes-associated C2cd4b gene in murine glucose homeostasis.
bioRxiv 2020.05.18.099200 (2020). doi: 10.1101/2020.05.18.099200
34.
Synthesis and in vivo behaviour of an exendin-4-based MRI probe capable of β-cell-dependent contrast enhancement in the pancreas.
Dalton Transactions 49, 4732–4740 (2020). doi: 10.1039/D0DT00332H
35.
Dysfunction of Persisting β Cells Is a Key Feature of Early Type 2 Diabetes Pathogenesis.
Cell Reports 31, 107469 (2020). doi: 10.1016/j.celrep.2020.03.033
36.
Understanding functional consequences of type 2 diabetes risk loci using the universal data integration and visualization R package CONQUER.
(Genomics, 2020). http://biorxiv.org/lookup/doi/10.1101/2020.03.27.011627.
37.
The type 2 diabetes gene product STARD10 is a phosphoinositide binding protein that controls insulin secretory granule biogenesis.
bioRxiv 2020.03.25.007286 (2020). doi: 10.1101/2020.03.25.007286
38.
The influence of peptide context on signalling and trafficking of glucagon-like peptide-1 receptor biased agonists.
bioRxiv 2020.02.24.961524 (2020). doi: 10.1101/2020.02.24.961524
39.
Glucocorticoid Metabolism in Obesity and Following Weight Loss.
Frontiers in Endocrinology 11, 59 (2020). doi: 10.3389/fendo.2020.00059
40.
Effects of pharmacological modulators of α-synuclein and tau aggregation and internalization.
bioRxiv 2020.01.27.921643 (2020). doi: 10.1101/2020.01.27.921643
41.
Klf6 protects β-cells against insulin resistance-induced dedifferentiation.
Molecular Metabolism (2020). doi: 10.1016/j.molmet.2020.02.001
42.
Purification of pancreatic endocrine subsets reveals increased iron metabolism in beta cells.
Molecular Metabolism 42, 101060 (2020). doi: 10.1016/j.molmet.2020.101060
43.
Metabolic and Functional Heterogeneity in Pancreatic β Cells.
Journal of Molecular Biology 432, 1395–1406 (2020). doi: 10.1016/j.jmb.2019.08.005
44.
Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure.
Nature Reviews Endocrinology 16, 349–362 (2020). doi: 10.1038/s41574-020-0355-7
45.
Control by Ca2+ of mitochondrial structure and function in pancreatic β-cells.
Cell Calcium 91, 102282 (2020). doi: 10.1016/j.ceca.2020.102282
46.
The pore-forming subunit MCU of the mitochondrial Ca2+ uniporter is required for normal glucose-stimulated insulin secretion in vitro and in vivo in mice.
Diabetologia 63, 1368–1381 (2020). doi: 10.1007/s00125-020-05148-x
47.
Recent Insights Into Mechanisms of β-Cell Lipo- and Glucolipotoxicity in Type 2 Diabetes.
Journal of Molecular Biology 432, 1514–1534 (2020). doi: 10.1016/j.jmb.2019.09.016
48.
Combined transcriptome and proteome profiling of the pancreatic β-cell response to palmitate unveils key pathways of β-cell lipotoxicity.
BMC Genomics 21, 590 (2020). doi: 10.1186/s12864-020-07003-0
49.
A direct look at the dysfunction and pathology of the β cells in human type 2 diabetes.
Seminars in Cell & Developmental Biology 103, 83–93 (2020). doi: 10.1016/j.semcdb.2020.04.005
50.
Persistent or Transient Human β Cell Dysfunction Induced by Metabolic Stress: Specific Signatures and Shared Gene Expression with Type 2 Diabetes.
Cell Reports 33, 108466 (2020). doi: 10.1016/j.celrep.2020.108466
51.
Stearoyl CoA desaturase is a gatekeeper that protects human beta cells against lipotoxicity and maintains their identity.
Diabetologia 63, 395–409 (2020). doi: 10.1007/s00125-019-05046-x
52.
Regulated expression and function of the GABAB receptor in human pancreatic beta cell line and islets.
Scientific Reports 10, 13469 (2020). doi: 10.1038/s41598-020-69758-6
53.
Visit-to-visit variability of glycemia and vascular complications: the Hoorn Diabetes Care System cohort.
Cardiovascular Diabetology 18, 170 (2019). doi: 10.1186/s12933-019-0975-1
54.
The supply chain of human pancreatic β cell lines.
The Journal of Clinical Investigation 129, 3511–3520 (2019). doi: 10.1172/JCI129484
55.
Metabolically phenotyped pancreatectomized patients as living donors for the study of islets in health and diabetes.
Molecular Metabolism 27, S1-S6 (2019). doi: 10.1016/j.molmet.2019.06.006
56.
Use of preclinical models to identify markers of type 2 diabetes susceptibility and novel regulators of insulin secretion – A step towards precision medicine.
Molecular Metabolism 27, S147-S154 (2019). doi: 10.1016/j.molmet.2019.06.008
57.
NACHO: an R package for quality control of NanoString nCounter data.
Bioinformatics btz647 (2019). doi: 10.1093/bioinformatics/btz647
58.
Fostering improved human islet research: a European perspective.
Diabetologia 62, 1514–1516 (2019). doi: 10.1007/s00125-019-4911-4
59.
Leader β-cells coordinate Ca 2+ dynamics across pancreatic islets in vivo.
Nature Metabolism 1, 615 (2019). doi: 10.1038/s42255-019-0075-2
60.
The tRNA Epitranscriptome and Diabetes: Emergence of tRNA Hypomodifications as a Cause of Pancreatic β-Cell Failure.
Endocrinology 160, 1262–1274 (2019). doi: 10.1210/en.2019-00098
61.
Laser capture microdissection of human pancreatic islets reveals novel eQTLs associated with type 2 diabetes.
Molecular Metabolism (2019). doi: 10.1016/j.molmet.2019.03.004
62.
ICA512 RESP18 homology domain is a protein condensing factor and insulin fibrillation inhibitor.
bioRxiv 521351 (2019). doi: 10.1101/521351
63.
Deciphering the Link Between Hyperhomocysteinemia and Ceramide Metabolism in Alzheimer-Type Neurodegeneration.
Frontiers in Neurology 10, (2019). doi: 10.3389/fneur.2019.00807
64.
Decision models of prediabetes populations: A systematic review.
Diabetes, Obesity and Metabolism 21, 1558–1569 (2019). doi: 10.1111/dom.13684
65.
The Expression of Aldolase B in Islets Is Negatively Associated With Insulin Secretion in Humans.
The Journal of Clinical Endocrinology & Metabolism 103, 4373–4383 (2018). doi: 10.1210/jc.2018-00791
66.
Inflammatory stress in islet β-cells: therapeutic implications for type 2 diabetes?.
Current Opinion in Pharmacology 43, 40–45 (2018). doi: 10.1016/j.coph.2018.08.002
67.
Pancreatic β-cell tRNA hypomethylation and fragmentation link TRMT10A deficiency with diabetes.
Nucleic Acids Research 46, 10302–10318 (2018). doi: 10.1093/nar/gky839
68.
Prediction of Glucose Tolerance without an Oral Glucose Tolerance Test.
Frontiers in Endocrinology 9, (2018). doi: 10.3389/fendo.2018.00082
69.
Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables.
The Lancet Diabetes & Endocrinology 6, 361–369 (2018). doi: 10.1016/S2213-8587(18)30051-2
70.
Modeling human pancreatic beta cell dedifferentiation.
Molecular Metabolism 10, 74–86 (2018). doi: 10.1016/j.molmet.2018.02.002
71.
Manipulation and Measurement of AMPK Activity in Pancreatic Islets.
in AMPK (Neumann, D. & Viollet, B.eds. ) 1732, 413–431 (Springer New York, 2018). http://link.springer.com/10.1007/978-1-4939-7598-3_26.
72.
MondoA Is an Essential Glucose-Responsive Transcription Factor in Human Pancreatic β-Cells.
Diabetes 67, 461–472 (2018). doi: 10.2337/db17-0595
73.
HbA1c is associated with altered expression in blood of cell cycle- and immune response-related genes.
Diabetologia 61, 138–146 (2018). doi: 10.1007/s00125-017-4467-0
74.
Endoplasmic reticulum stress and eIF2α phosphorylation: The Achilles heel of pancreatic β cells.
Molecular Metabolism 6, 1024–1039 (2017). doi: 10.1016/j.molmet.2017.06.001
75.
Lifestyle and precision diabetes medicine: will genomics help optimise the prediction, prevention and treatment of type 2 diabetes through lifestyle therapy?.
Diabetologia 60, 784–792 (2017). doi: 10.1007/s00125-017-4207-5
76.
Computer simulation models of pre-diabetes populations: a systematic review protocol.
BMJ Open 7, e014954 (2017). doi: 10.1136/bmjopen-2016-014954
77.
Painting a new picture of personalised medicine for diabetes.
Diabetologia 60, 793–799 (2017). doi: 10.1007/s00125-017-4210-x
78.
Lifestyle precision medicine: the next generation in type 2 diabetes prevention?.
BMC Medicine 15, (2017). doi: 10.1186/s12916-017-0938-x
79.
Local and regional control of calcium dynamics in the pancreatic islet.
Diabetes, Obesity and Metabolism 19, 30–41 (2017). doi: 10.1111/dom.12990
80.
Performance of the UKPDS Outcomes Model for Prediction of Myocardial Infarction and Stroke in the ADDITION-Europe Trial Cohort.
Value in Health 16, 1074–1080 (2013). doi: 10.1016/j.jval.2013.06.001
81.
Phospholipase A2 as a probe of phospholipid distribution in erythrocyte membranes. Factors influencing the apparent specificity of the reaction.
Biochemistry 14, 5400–5408 (1975). doi: 10.1021/bi00696a003
Stacks Image 47
Stacks Image 398
Stacks Image 51
Stacks Image 349
This project receives funding from the Innovative Medicines Initiative 2 Joint Undertaking (www.imi.europa.eu) under grant agreement No 115881. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA.

This work is supported by the Swiss State Secretariat for Education‚ Research and Innovation (SERI) under contract number 16.0097-2.

The opinions expressed and arguments employed herein do not necessarily reflect the official views of these funding bodies.