Our publications
1.
Adipocyte-specific deletion of Tcf7l2 induces dysregulated lipid metabolism and impairs glucose tolerance in mice.
Diabetologia 64, 129–141 (2021). doi: 10.1007/s00125-020-05292-4
2.
dsSwissKnife: An R package for federated data analysis.
bioRxiv 2020.11.17.386813 (2020). doi: 10.1101/2020.11.17.386813
3.
Pancreatic Steatosis Associates With Impaired Insulin Secretion in Genetically Predisposed Individuals.
The Journal of Clinical Endocrinology & Metabolism 105, dgaa435 (2020). doi: 10.1210/clinem/dgaa435
4.
Functional Genomics in Pancreatic β Cells: Recent Advances in Gene Deletion and Genome Editing Technologies for Diabetes Research.
Frontiers in Endocrinology 11, 576–632 (2020). doi: 10.3389/fendo.2020.576632
5.
Covid-19 and Diabetes: A Complex Bidirectional Relationship.
Frontiers in Endocrinology 11, 582936 (2020). doi: 10.3389/fendo.2020.582936
6.
Transcription factors that shape the mammalian pancreas.
Diabetologia 63, 1974–1980 (2020). doi: 10.1007/s00125-020-05161-0
7.
Benchmarking the Cost-Effectiveness of Interventions Delaying Diabetes: A Simulation Study Based on NAVIGATOR Data.
Diabetes Care 43, 2485–2492 (2020). doi: 10.2337/dc20-0717
8.
The making of insulin in health and disease.
Diabetologia 63, 1981–1989 (2020). doi: 10.1007/s00125-020-05192-7
9.
An investigation of causal relationships between prediabetes and vascular complications.
Nature Communications 11, 4592 (2020). doi: 10.1038/s41467-020-18386-9
10.
Evaluating the Ability of Economic Models of Diabetes to Simulate New Cardiovascular Outcomes Trials: A Report on the Ninth Mount Hood Diabetes Challenge.
Value in Health 23, 1163–1170 (2020). doi: 10.1016/j.jval.2020.04.1832
11.
Regulated expression and function of the GABA B receptor in human pancreatic beta cell line and islets.
Scientific Reports 10, 13469 (2020). doi: 10.1038/s41598-020-69758-6
12.
A surrogate of Roux-en-Y gastric bypass (the enterogastro anastomosis surgery) regulates multiple beta-cell pathways during resolution of diabetes in ob/ob mice.
EBioMedicine 58, 102895 (2020). doi: 10.1016/j.ebiom.2020.102895
13.
The Constitutive Lack of α7 Nicotinic Receptor Leads to Metabolic Disorders in Mouse.
Biomolecules 10, 1057 (2020). doi: 10.3390/biom10071057
14.
Disconnect between signalling potency and in vivo efficacy of pharmacokinetically optimised biased glucagon-like peptide-1 receptor agonists.
Molecular Metabolism 37, 100991 (2020). doi: 10.1016/j.molmet.2020.100991
15.
Sexually dimorphic roles for the type 2 diabetes-associated C2cd4b gene in murine glucose homeostasis.
bioRxiv 2020.05.18.099200 (2020). doi: 10.1101/2020.05.18.099200
16.
Intravital imaging of islet Ca <sup>2+</sup> dynamics reveals enhanced β cell connectivity after bariatric surgery in mice.
(Cell Biology, 2020). http://biorxiv.org/lookup/doi/10.1101/2020.05.05.078725.
17.
Synthesis and in vivo behaviour of an exendin-4-based MRI probe capable of β-cell-dependent contrast enhancement in the pancreas.
Dalton Transactions 49, 4732–4740 (2020). doi: 10.1039/D0DT00332H
18.
Dysfunction of Persisting β Cells Is a Key Feature of Early Type 2 Diabetes Pathogenesis.
Cell Reports 31, 107469 (2020). doi: 10.1016/j.celrep.2020.03.033
19.
Chromatin 3D interaction analysis of the STARD10 locus unveils FCHSD2 as a new regulator of insulin secretion.
(Cell Biology, 2020). http://biorxiv.org/lookup/doi/10.1101/2020.03.31.017707.
20.
Understanding functional consequences of type 2 diabetes risk loci using the universal data integration and visualization R package CONQUER.
(Genomics, 2020). http://biorxiv.org/lookup/doi/10.1101/2020.03.27.011627.
21.
The type 2 diabetes gene product STARD10 is a phosphoinositide binding protein that controls insulin secretory granule biogenesis.
bioRxiv 2020.03.25.007286 (2020). doi: 10.1101/2020.03.25.007286
22.
The influence of peptide context on signalling and trafficking of glucagon-like peptide-1 receptor biased agonists.
bioRxiv 2020.02.24.961524 (2020). doi: 10.1101/2020.02.24.961524
23.
Effects of pharmacological modulators of α-synuclein and tau aggregation and internalization.
bioRxiv 2020.01.27.921643 (2020). doi: 10.1101/2020.01.27.921643
24.
Klf6 protects β-cells against insulin resistance-induced dedifferentiation.
Molecular Metabolism (2020). doi: 10.1016/j.molmet.2020.02.001
25.
Control by Ca2+ of mitochondrial structure and function in pancreatic β-cells.
Cell Calcium 91, 102282 (2020). doi: 10.1016/j.ceca.2020.102282
26.
The pore-forming subunit MCU of the mitochondrial Ca2+ uniporter is required for normal glucose-stimulated insulin secretion in vitro and in vivo in mice.
Diabetologia 63, 1368–1381 (2020). doi: 10.1007/s00125-020-05148-x
27.
Stearoyl CoA desaturase is a gatekeeper that protects human beta cells against lipotoxicity and maintains their identity.
Diabetologia 63, 395–409 (2020). doi: 10.1007/s00125-019-05046-x
28.
Visit-to-visit variability of glycemia and vascular complications: the Hoorn Diabetes Care System cohort.
Cardiovascular Diabetology 18, 170 (2019). doi: 10.1186/s12933-019-0975-1
29.
The supply chain of human pancreatic β cell lines.
The Journal of Clinical Investigation 129, 3511–3520 (2019). doi: 10.1172/JCI129484
30.
Metabolically phenotyped pancreatectomized patients as living donors for the study of islets in health and diabetes.
Molecular Metabolism 27, S1-S6 (2019). doi: 10.1016/j.molmet.2019.06.006
31.
Use of preclinical models to identify markers of type 2 diabetes susceptibility and novel regulators of insulin secretion – A step towards precision medicine.
Molecular Metabolism 27, S147-S154 (2019). doi: 10.1016/j.molmet.2019.06.008
32.
NACHO: an R package for quality control of NanoString nCounter data.
Bioinformatics btz647 (2019). doi: 10.1093/bioinformatics/btz647
33.
Fostering improved human islet research: a European perspective.
Diabetologia 62, 1514–1516 (2019). doi: 10.1007/s00125-019-4911-4
34.
Leader β-cells coordinate Ca 2+ dynamics across pancreatic islets in vivo.
Nature Metabolism 1, 615 (2019). doi: 10.1038/s42255-019-0075-2
35.
The tRNA Epitranscriptome and Diabetes: Emergence of tRNA Hypomodifications as a Cause of Pancreatic β-Cell Failure.
Endocrinology 160, 1262–1274 (2019). doi: 10.1210/en.2019-00098
36.
Laser capture microdissection of human pancreatic islets reveals novel eQTLs associated with type 2 diabetes.
Molecular Metabolism (2019). doi: 10.1016/j.molmet.2019.03.004
37.
ICA512 RESP18 homology domain is a protein condensing factor and insulin fibrillation inhibitor.
bioRxiv 521351 (2019). doi: 10.1101/521351
38.
Deciphering the Link Between Hyperhomocysteinemia and Ceramide Metabolism in Alzheimer-Type Neurodegeneration.
Frontiers in Neurology 10, (2019). doi: 10.3389/fneur.2019.00807
39.
Decision models of prediabetes populations: A systematic review.
Diabetes, Obesity and Metabolism 21, 1558–1569 (2019). doi: 10.1111/dom.13684
40.
The Expression of Aldolase B in Islets Is Negatively Associated With Insulin Secretion in Humans.
The Journal of Clinical Endocrinology & Metabolism 103, 4373–4383 (2018). doi: 10.1210/jc.2018-00791
41.
Inflammatory stress in islet β-cells: therapeutic implications for type 2 diabetes?.
Current Opinion in Pharmacology 43, 40–45 (2018). doi: 10.1016/j.coph.2018.08.002
42.
Pancreatic β-cell tRNA hypomethylation and fragmentation link TRMT10A deficiency with diabetes.
Nucleic Acids Research 46, 10302–10318 (2018). doi: 10.1093/nar/gky839
43.
Prediction of Glucose Tolerance without an Oral Glucose Tolerance Test.
Frontiers in Endocrinology 9, (2018). doi: 10.3389/fendo.2018.00082
44.
Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables.
The Lancet Diabetes & Endocrinology 6, 361–369 (2018). doi: 10.1016/S2213-8587(18)30051-2
45.
Modeling human pancreatic beta cell dedifferentiation.
Molecular Metabolism 10, 74–86 (2018). doi: 10.1016/j.molmet.2018.02.002
46.
Manipulation and Measurement of AMPK Activity in Pancreatic Islets.
in AMPK (Neumann, D. & Viollet, B.eds. ) 1732, 413–431 (Springer New York, 2018). http://link.springer.com/10.1007/978-1-4939-7598-3_26.
47.
MondoA Is an Essential Glucose-Responsive Transcription Factor in Human Pancreatic β-Cells.
Diabetes 67, 461–472 (2018). doi: 10.2337/db17-0595
48.
HbA1c is associated with altered expression in blood of cell cycle- and immune response-related genes.
Diabetologia 61, 138–146 (2018). doi: 10.1007/s00125-017-4467-0
49.
Endoplasmic reticulum stress and eIF2α phosphorylation: The Achilles heel of pancreatic β cells.
Molecular Metabolism 6, 1024–1039 (2017). doi: 10.1016/j.molmet.2017.06.001
50.
Lifestyle and precision diabetes medicine: will genomics help optimise the prediction, prevention and treatment of type 2 diabetes through lifestyle therapy?.
Diabetologia 60, 784–792 (2017). doi: 10.1007/s00125-017-4207-5
51.
Computer simulation models of pre-diabetes populations: a systematic review protocol.
BMJ Open 7, e014954 (2017). doi: 10.1136/bmjopen-2016-014954
52.
Painting a new picture of personalised medicine for diabetes.
Diabetologia 60, 793–799 (2017). doi: 10.1007/s00125-017-4210-x
53.
Lifestyle precision medicine: the next generation in type 2 diabetes prevention?.
BMC Medicine 15, (2017). doi: 10.1186/s12916-017-0938-x
54.
Local and regional control of calcium dynamics in the pancreatic islet.
Diabetes, Obesity and Metabolism 19, 30–41 (2017). doi: 10.1111/dom.12990
55.
Phospholipase A2 as a probe of phospholipid distribution in erythrocyte membranes. Factors influencing the apparent specificity of the reaction.
Biochemistry 14, 5400–5408 (1975). doi: 10.1021/bi00696a003
56.
Prediction of mortality and major cardiovascular complications in type 2 diabetes: External validation of UK Prospective Diabetes Study outcomes model version 2 in two European observational cohorts.
Diabetes, Obesity and Metabolism n/a, doi: https://doi.org/10.1111/dom.14311
Stacks Image 47
Stacks Image 398
Stacks Image 51
Stacks Image 349
This project receives funding from the Innovative Medicines Initiative 2 Joint Undertaking (www.imi.europa.eu) under grant agreement No 115881. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA.

This work is supported by the Swiss State Secretariat for Education‚ Research and Innovation (SERI) under contract number 16.0097-2.

The opinions expressed and arguments employed herein do not necessarily reflect the official views of these funding bodies.